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Energy flux into a fluidized granular medium at a vibrating wall

Sean McNamara* and Jean-Louis Barrat
Département de Physique des Mate´riaux, UniversitéClaude Bernard and CNRS, 69622 Villeurbanne Cedex, France

~Received 25 July 1996!

We study the power input of a vibrating wall into a fluidized granular medium, using event-driven simula-
tions of a model granular system. The system consists of inelastic hard disks contained between a stationary
and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both
involving the pressure. The transition between the two occurs when waves generated at the moving wall can
propagate across the system. Choosing an appropriate wave form for the vibrating wall removes one of these
scalings and renders the second very simple.@S1063-651X~97!02405-7#

PACS number~s!: 05.60.1w, 46.10.1z, 05.70.Ln, 47.11.1j
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One of the essential differences between fluidized gra
lar systems and usual gases is that sustaining a fluidized
necessitates a continuous input of energy into the sys
since the particle kinetic energy is dissipated during the c
lisions. Experimentally, this is often achieved by using
vibrating piston. The nature of the energy exchange betw
the vibrating piston and the fluidized granular medium, ho
ever, does not appear to have been studied in great deta
most cases, it is assumed that the vibrating wall impose
‘‘granular temperature’’ of the particles that corresponds
its mean-squared velocity. The purpose of this work is
achieve a more detailed understanding of this energy
change by studying numerically and theoretically a parti
larly simple case. The system we consider@Fig. 1~a!# is a
two-dimensional fluid of inelastic hard disks, contained b
tween two walls in they direction and with periodic bound
ary conditions in thex direction. The moving wall is, at its
lowest point, aty50, while a stationary wall limits the sys
tem aty5H. For the sake of simplicity, we have chosen
treat the wall-particle collisions as elastic and to set the gr
ity force equal to zero. Hence the system can be enti
characterized by a small number of dimensionless par
eters. These parameters are the ratios of the system sizH
~in the y direction! andL ~in the x direction! to the particle
radius a, the density measured by the area fracti
Npa2/LH (N is the number of particles!, the amplitude of
vibrationA of the moving wall, measured in units ofa, and
the restitution coefficientr,1. @In the center-of-mass fram
of two colliding particlesvn852rvn , wherevn (vn8) is the
normal component of the particles’ velocity before~after! the
collision.# Finally, the problem is completely defined b
specifying the wave formf(t) of the wall vibration. Note
that t, the period of this wave form, defines the time unit
the problem. There is a second time scale in the probl
tcoll , the time between collisions experienced by an aver
particle. Buttcoll is not independent oft; the ratiot/tcoll is a
function of the five dimensionless numbers given above
the simulations considered here, 2<t/tcoll<40. In Fig. 1~b!
we show the two wave forms, labeled (A) and (B), used to
drive the vibrating wall.

*Present address: ICA 1, Pfaffenwaldring 27, 70569 Stuttg
Germany.
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We note that the system studied in this paper is an ex
nally driven version of the system considered in Refs.@1–3#.
Despite its simplicity, this system was shown to display
nontrivial behavior even in the absence of external forci
with the development of several instabilities during ‘‘hom
geneous cooling.’’ Other instabilities, such as the format
of lateral structures in thex direction, could be expected in
the forced case. Since our main object is the study of ene
input at a local scale, we deliberately avoided such structu
by using a relatively small system widthL/a550.

If we were to add gravity to the system studied in th
paper, we would have the system studied in Refs.@4–8#. The
most important results of this paper can be modified to
clude gravity, as we discuss at the end.

If we were to drive the system by imposing a ‘‘granul

t,
FIG. 1. ~a! Sketch of the system studied.~b! Two wave forms

used to drive the vibrating wall: the symmetric wave form (A) and
the asymmetric wave form (B).
7767 © 1997 The American Physical Society
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temperature’’ at one wall, we would have the system stud
in Ref. @9#. A comparison of these two papers enables one
see the effects of the vibrating plate boundary condition.
also note that the focus of@9# is complementary to ours
They are concerned with the interior, whereas we conc
trate on the boundaries.

Figure 2 shows that a detailed understanding of
particle-wall interaction is needed. When the wall is driv
with the asymmetric wave formB, the relation between the
average energy per particleE/N and the restitution coeffi-
cient obeys a simple power lawE/N;(12r )21.960.1. On the
other hand, the symmetric wave formA generates much
more complicated behavior. Since the only difference
tween these two curves is the wave form, their differen
cannot be explained without understanding what happen
the vibrating boundary. This paper explains how the wa
form causes the two different relations betweenE/N and r .

We begin by looking closely at what is happening insi
the system. We show typical density and temperature pro
in Fig. 3, for a system driven by a symmetric wave for
@typeA in Fig. 1~b!#. The evolution of the profiles during th
wall motion is also detailed in these figures. As the vibra
system is ‘‘heated’’ by the moving wall, an inhomogeneo
density and temperature~temperature being understood he
as kinetic energy per particle! profile develops. Far from the
moving wall, the system is denser and cooler than close t
The temperature profile clearly displays two different
gions. In a region that extends over about half the heighH
of the box, a heat pulse generated at the vibrating wall pro
gates in the positivey direction. Farther away from the mov
ing wall, the heat pulses are completely damped and
temperature is stationary. The ‘‘boundary region’’ for th
temperature thus appears to be rather broad. The density
file also displays a~small! time-dependent component, ind
cating that the heat pulses are coupled to compression w
in the fluid. These heat and density waves can transport
nificant amounts of energy within the boundary region. T

FIG. 2. Average energy per particle as a function ofr , showing
the effect of changing the wave form of the vibrating wall. T
parameters of these simulations areL5H550a, area fraction
Npa2/LH50.25, wall velocityV58a/t, and 0.8<r<0.998 866.
Energy is measured in units ofma2/t2, wherem is the mass of one
particle.
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is in conflict with the assumption that energy transport
dominated everywhere by conduction~for example, in@6#!.
We note that similar waves have been studied in sha
granular materials under gravity@7,8#. These waves resembl
sound waves in a gas. However, their description in terms
a single ‘‘temperature’’ is not perfectly accurate. A mo
careful examination shows that the particles in these wa
can be divided into two distinct populations with signifi
cantly different kinetic temperatures. One population is ma
up of rapidly moving particles that, having just encounter
the moving wall, travel towards the stationary region, car
ing the heat pulses. The other is a population of slowly m

FIG. 3. Profiles of~a! temperature~energy per particle in units
of ma2/t2! and ~b! density ~measured by the local area fractio
n). The nondimensional parameters areL5H550a, r50.95,
Npa2/LH50.25,A52a, and the symmetric wave form.@There are
aboutN/(L/2a)'8 layers of particles.# For these values of the
parameters,t/tcoll53.39. In each graph, there are four lines sho
ing the field values at four times during the driving cycle. The w
is at its lowest point (y50) at t50 and at its highest poin
(y5A52) at t50.5. At t50.25 (t50.75), it is halfway between
these extremes and ascending~descending!. These profiles were
made by averaging over 2000 cycles. In low-density regions,
fluctuations between one cycle and another are large. Howe
fluctuations between averages over many cycles are small, as s
by the smoothness of the curves.
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ing particles emerging from the stationary region and trav
ing towards the moving wall.

We now seek a law giving the power injected by the w
Pw in terms of the kinetic pressurep ~defined as the momen
tum transfer to the stationary wall per unit surface and tim!.
Because of momentum conservation, the pressure on th
brating wall must also bep, and dimensional reasoning su
gests that the power input should be proportional to the fo
on the wallpL times the wall velocityV. For the asymmetric
wave formB, this proportionality is indeed easily shown
hold as an equality. The argument is as follows. Collisio
between the particles and the wall take place only when
wall is in its ascending phase. When such a collision ta
place, the energy change and the momentum change o
particle are related byDE5VDpy . Summing over all par-
ticles that hit the wall during a cycle shows that the avera
energy transfer per unit time will be equal to the wall velo
ity multiplied by the momentum transfer per unit time, i.e
Pw5pVL. This conclusion is extremely well borne out b
the simulation results, as can be seen in Fig. 4.

The reasoning can be generalized to the case of o
wave forms, e.g.,A. In that case, the particles can eith
receive or lose energy as they hit the wall. If the arrival tim
of the particles at the vibrating wall are independent of
phase of the vibrating wall, then the probabilities of the
two events will depend only on the ratio between velocity
the particles and the wall velocityV, so that we expect the
power input to scale aspVLF(U/V), whereU is a velocity
characteristic of the particles that hit the wall andF is a
dimensionless function that will depend on the wave fo
and on the velocity distribution of the particles near the w
In Fig. 4 this scaling relation was tested by plotting t
power input as a function of the dimensionless varia
U/V, where the typical particle speedU is estimated by the
square root of the average energy per particle (E/N)1/2 @10#.
The unscaled values ofPw range over four orders of magn
tude, so the success of the scaling is impressive. The sc
is very well obeyed except for the largest amplitudes of w

FIG. 4. Power input scaled asPw5pVLF(U/V). The points
joined by the solid line and labeled (A) were generated by the
symmetric wave form, those joined by the dashed line and lab
(B) by the asymmetric one. The parameters areL5H550a,
Npa250.25, 1<A<5 ~as indicated on the graph!, and
0.8<r<0.998 866.
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vibration, in which case it fails for small values of the re
caled power inputPw /pVL.

The failure of the scaling relationship for sma
Pw /pVL can be traced back to the extension of the bound
region over the whole simulation cell. Asr increases towards
1, the pulses generated by the wall broaden and propa
further. Eventually, they reach the opposite wall, so that
stationary region no longer exists. The entire box is filled
a standing wave driven by the vibrating wall. The transiti
to this situation is observed for values of the restitution c
efficient very close to one and for large vibration amplitud
and only in the case where the excitation is of the formA.
When this transition takes place, the points in Fig. 4 lea
the scaling curve, displaying a discontinuous and nonmo
tonic behavior. The points leave the scaling curve beca
the arrival times of the particles at the moving wall are
longer independent of the phase of the wall vibration, so t
the simple assumptions used in deriving the scaling relat
ship break down. Moreover, the nonmonotonic behavior
caused by resonances between the driving frequency
modes of the granular ‘‘gas’’ between the two plates.~The
discontinuity occurs when the standing wave changes m
number.!

This physical picture suggests a second scaling relat
ship. In Fig. 5 we show thatPw5(pV2tL/H)G@Ut/(H
2A)#, whereG is another dimensionless function.~The in-
clusion of the period of the wall vibrationt is required di-
mensionally.! This second scaling is valid everywhere th
first one fails. It can be understood by considering the h
pulses as sound waves in a gas, with grains playing the
of molecules. The wave speed scales asU, soUt/(H2A) is
the fraction of the box that a wave can travel during o
period. For particular values ofUt/(H2A), resonance be-
tween the wall and the waves will occur.Pw will scale as
p̂VL, wherep̂ is the pressure amplitude of the wave. Exa
ining the properties of sound waves in a compressible ga

d
FIG. 5. Same data as the points joined by the solid line in Fig

~symmetric wave form!, but scaled with the second scaling pr
sented in the text:Pw5(pV2Lt/H)G@Ut/(H2A)#. The points
that disobey the previous scaling collapse onto a single curve.
gap at 0.5<U/(H2A)<0.8 is caused by the resonance between
heat pulses and the vibrating wall. This gap corresponds to
discontinuities in Figs. 2 and 4.
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pressurep, we find that the pressure and velocity amplitud
are related byp̂5(k/v)pû, whereû is the velocity ampli-
tude, k is the wave number of the wave, andv is its fre-
quency. Settingû;V, k;H21, andv;t21 gives the scal-
ing in Fig. 5.

The resonance affects the power injected by the wall o
for the symmetric wave formA, even though waves gene
ated by the asymmetric wave formB can also propagate
throughout the box at largeA andr close to 1. The reason i
that particles can either gain or lose energy with the symm
ric wave form. Thus, shifting the arrival time of a larg
group of particles by half a period can change the sign
Pw . On the other hand, for the asymmetric wave formB, the
amount of energy gained by the particles does not depen
the phase of the wall.

The transition between the two scalings occurs at the c
cal value Ut/(H2A)'0.4. Examination of simulations
made with 30,H,100 confirms that this critical value re
mains constant. At this time, we do not have a satisfy
explanation for this critical value. Examination of temper
ture profiles confirm that the transition occurs when the w
propagates all the way through the system. However, an
timate based on the decay of the wave due to diffusion p
n,
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dicts the transition will occur at a critical value o
U2t2/ lH;pt2/H ( l is the mean-free path!, but this is not
true.

The theoretical innovation of this paper is to consider
energy flux as a function of the pressure instead of the lo
granular temperature~as in@6#!. It is this difference that dis-
tinguishes the scaling relations presented here from othe
the literature.

We believe these results to be relevant to current exp
mental questions. First of all, an experimental version of t
system will soon be studied in microgravity@11#. Second,
these results can easily be extended to experiments don
gravity by realizing that conservation of momentum requi
that the pressure~the time-averaged force on the botto
plate! be the weight of the granular material:pL5Nmg.
Finally, this work suggests that using the wave formB ~or an
experimental approximation! may simplify results, leading to
a better physical understanding of granular flows.
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