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Energy flux into a fluidized granular medium at a vibrating wall
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We study the power input of a vibrating wall into a fluidized granular medium, using event-driven simula-
tions of a model granular system. The system consists of inelastic hard disks contained between a stationary
and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both
involving the pressure. The transition between the two occurs when waves generated at the moving wall can
propagate across the system. Choosing an appropriate wave form for the vibrating wall removes one of these
scalings and renders the second very simB4.063-651X97)02405-7
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One of the essential differences between fluidized granu- We note that the system studied in this paper is an exter-
lar systems and usual gases is that sustaining a fluidized statelly driven version of the system considered in Rgfs:3].
necessitates a continuous input of energy into the systemespite its simplicity, this system was shown to display a
since the particle kinetic energy is dissipated during the colnontrivial behavior even in the absence of external forcing,
lisions. Experimentally, this is often achieved by using awith the development of several instabilities during “homo-
vibrating piston. The nature of the energy exchange betweegeneous cooling.” Other instabilities, such as the formation
the vibrating piston and the fluidized granular medium, how-of lateral structures in the direction, could be expected in
ever, does not appear to have been studied in great detalil. tAe forced case. Since our main object is the study of energy
most cases, it is assumed that the vibrating wall imposes @put at a local scale, we deliberately avoided such structures
“granular temperature” of the particles that corresponds topy using a relatively small system width/a=50.
its mean-squared velocity. The purpose of this work is to  |f we were to add gravity to the system studied in this
achieve a more detailed understanding of this energy expaper, we would have the system studied in Rgfs8]. The
change by studying numerically and theoretically a particumost important results of this paper can be modified to in-
larly simple case. The system we consifEig. 1(@] is a  clude gravity, as we discuss at the end.
two-dimensional fluid of inelastic hard disks, contained be- |f we were to drive the system by imposing a “granular
tween two walls in they direction and with periodic bound-

ary conditions in thex direction. The moving wall is, at its « L ,
lowest point, aty=0, while a stationary wall limits the sys- ‘
tem aty=H. For the sake of simplicity, we have chosen to /272777 777777777777/ 777724

treat the wall-particle collisions as elastic and to set the grav-
ity force equal to zero. Hence the system can be entirely
characterized by a small number of dimensionless param-
eters. These parameters are the ratios of the systemHizes
(in they direction andL (in the x direction to the particle H
radius a, the density measured by the area fraction
Nza?/LH (N is the number of particlésthe amplitude of
vibration A of the moving wall, measured in units af and
the restitution coefficient<1.[In the center-of-mass frame
of two colliding particlesv,=—rv,, wherev, (v,) is the
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normal component of the particles’ velocity befdadter the y v

collision.] Finally, the problem is completely defined by L Q
specifying the wave formp(t) of the wall vibration. Note X

that 7, the period of this wave form, defines the time unit in (@

the problem. There is a second time scale in the problem:
teon. the time between collisions experienced by an average
particle. Butt.,, is not independent of; the ratior/t. is a
function of the five dimensionless numbers given above. In
the simulations considered heres2/t,<40. In Fig. 1b)

we show the two wave forms, labeled) and B), used to (B) /‘/I/I/I

drive the vibrating wall. )

=

FIG. 1. (a) Sketch of the system studieth) Two wave forms
*Present address: ICA 1, Pfaffenwaldring 27, 70569 Stuttgartused to drive the vibrating wall: the symmetric wave for&j @nd
Germany. the asymmetric wave formB().
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FIG. 2. Average energy per particle as a functiorr ofhowing
the effect of changing the wave form of the vibrating wall. The
parameters of these simulations dre=H=50a, area fraction
N7a?/LH=0.25, wall velocityV=8a/r, and 0.8<r=<0.998 866. 0
Energy is measured in units ofa?/ 72, wherem is the mass of one 04 F 0 e t=0.25 i

particle. ---- =05
——- t=0.75

temperature” at one wall, we would have the system studied ~
in Ref.[9]. A comparison of these two papers enables one to
see the effects of the vibrating plate boundary condition. We 02 r
also note that the focus d®] is complementary to ours:
They are concerned with the interior, whereas we concen- o 24l
trate on the boundaries.
Figure 2 shows that a detailed understanding of the . ‘
particle-wall interaction is needed. When the wall is driven 0 10 20 30 40 50
with the asymmetric wave forrB, the relation between the y
average energy per partic/N and the restitution coeffi-
cient obeys a simple power la&/N~ (1—r)~1%*% On the FIG. 3. Profiles of(a) temperaturgenergy per particle in units
other hand, the symmetric wave forth generates much of ma’/7%) and (b) density (measured by the local area fraction
more complicated behavior. Since the only difference be¥). The nondimensional parameters are=H=>50a, r=0.95,
tween these two curves is the wave form, their differencedma?/LH=0.25,A=2a, and the symmetric wave forfilhere are
cannot be explained without understanding what happens &PoUtN/(L/2a)~8 layers of particle3.For these values of the
the vibrating boundary. This paper explains how the wave?@rameters/tey=3.39. In each graph, there are four lines show-
form causes the two different relations betwdsiN andr. ~ nd the field values at four times during the driving cycle. The wall
We begin by looking closely at what is happening insides 2t its lowest point ¥=0) at t=0 and at its highest point
the system. We show typical density and temperature profile =A=2) att=05. Att=0.25 (=0.75), it is halfway between
. . . . these extremes and ascendifigscending These profiles were
in Fig. 3, for a system driven by a symmetric wave form

- . : . made by averaging over 2000 cycles. In low-density regions, the
[type A in Fig. 1(b)]. The evolution of the profiles during the luctuations between one cycle and another are large. However,

wall mo'qo? IS also”detalled In these flgures._ As the vibrate luctuations between averages over many cycles are small, as shown
system is heated” by the moving wallz an mhomogeneousby the smoothness of the curves.

density and temperatufgemperature being understood here

as kinetic energy per partil@rofile develops. Far from the ) ) ) _
moving wall, the system is denser and cooler than close to ifS in conflict with the assumption that energy transport is
The temperature profile clearly displays two different re-dominated everywhere by conductitior example, in[6]).
gions. In a region that extends over about half the hefight We note that similar waves have been studied in shaken
of the box, a heat pulse generated at the vibrating wall propagranular materials under gravity,8]. These waves resemble
gates in the positivg direction. Farther away from the mov- sound waves in a gas. However, their description in terms of
ing wall, the heat pulses are completely damped and the single “temperature” is not perfectly accurate. A more
temperature is stationary. The “boundary region” for the careful examination shows that the particles in these waves
temperature thus appears to be rather broad. The density prean be divided into two distinct populations with signifi-
file also displays dsmall time-dependent component, indi- cantly different kinetic temperatures. One population is made
cating that the heat pulses are coupled to compression wavep of rapidly moving particles that, having just encountered
in the fluid. These heat and density waves can transport sighe moving wall, travel towards the stationary region, carry-
nificant amounts of energy within the boundary region. Thising the heat pulses. The other is a population of slowly mov-
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FIG. 4. Power input scaled a&,=pVLF(U/V). The points
joined by the solid line and labeledAf were generated by the FIG. 5. Same data as the points joined by the solid line in Fig. 4
symmetric wave form, those joined by the dashed line and labele¢symmetric wave forr but scaled with the second scaling pre-
(B) by the asymmetric one. The parameters &reH=50a, sented in the textP,=(pV2L7/H)G[U7/(H—A)]. The points
Nwa?=0.25, I<A<5 (as indicated on the graph and that disobey the previous scaling collapse onto a single curve. The
0.8<r=0.998 866. gap at 0.5U/(H—A)=<0.8 is caused by the resonance between the

) . . ) ) heat pulses and the vibrating wall. This gap corresponds to the
ing particles emerging from the stationary region and travelyiscontinuities in Figs. 2 and 4.

ing towards the moving wall.

We now seek a law giving the power injected by the wall vibration, in which case it fails for small values of the res-
P,, in terms of the kinetic pressuge(defined as the momen- caled power inpuP,,/pVL.
tum transfer to the stationary wall per unit surface and Xime  The failure of the scaling relationship for small
Because of momentum conservation, the pressure on the VR, /pVL can be traced back to the extension of the boundary
brating wall must also bp, and dimensional reasoning sug- region over the whole simulation cell. Asncreases towards
gests that the power input should be proportional to the forcd, the pulses generated by the wall broaden and propagate
on the wallpL times the wall velocityv. For the asymmetric  further. Eventually, they reach the opposite wall, so that the
wave formB, this proportionality is indeed easily shown to stationary region no longer exists. The entire box is filled by
hold as an equality. The argument is as follows. Collisions2 standing wave driven by the vibrating wall. The transition
between the particles and the wall take place only when théo this situation is observed for values of the restitution co-
wall is in its ascending phase. When such a collision takeéfficient very close to one and for large vibration amplitudes
place, the energy change and the momentum change of ti@ad only in the case where the excitation is of the fakm
particle are related bAE=VAp,. Summing over all par- When this transition takes place, the points in Fig. 4 leave
ticles that hit the wall during a cycle shows that the averagdhe scaling curve, displaying a discontinuous and nonmono-
energy transfer per unit time will be equal to the wall veloc-tonic behavior. The points leave the scaling curve because
ity multiplied by the momentum transfer per unit time, i.e., the arrival times of the particles at the moving wall are no
P,,=pVL. This conclusion is extremely well borne out by longer independent of the phase of the wall vibration, so that
the simulation results, as can be seen in Fig. 4. the simple assumptions used in deriving the scaling relation-

The reasoning can be generalized to the case of oth&hip break down. Moreover, the nonmonotonic behavior is
wave forms, e.g.A. In that case, the particles can either caused by resonances between the driving frequency and
receive or lose energy as they hit the wall. If the arrival timesnodes of the granular “gas” between the two plat€Ehe
of the particles at the vibrating wall are independent of thediscontinuity occurs when the standing wave changes mode
phase of the vibrating wall, then the probabilities of thesenumber)
two events will depend only on the ratio between velocity of ~ This physical picture suggests a second scaling relation-
the particles and the wall velocity, so that we expect the ship. In Fig. 5 we show thaP,=(pV*7L/H)G[Ur/(H
power input to scale asVLF(U/V), whereU is a velocity =~ —A)], whereG is another dimensionless functiofThe in-
characteristic of the particles that hit the wall aRdis a  clusion of the period of the wall vibration is required di-
dimensionless function that will depend on the wave formmensionally) This second scaling is valid everywhere the
and on the velocity distribution of the particles near the wall first one fails. It can be understood by considering the heat
In Fig. 4 this scaling relation was tested by plotting thepulses as sound waves in a gas, with grains playing the role
power input as a function of the dimensionless variableof molecules. The wave speed scaled)asoU 7/(H —A) is
U/V, where the typical particle speétl is estimated by the the fraction of the box that a wave can travel during one
square root of the average energy per partiag\o 12 []_O] period. For particular values df T/(H _A), resonance be-
The unscaled values &, range over four orders of magni- tween the wall and the waves will occu?,, will scale as
tude, so the success of the scaling is impressive. The scalingv/L, wherep is the pressure amplitude of the wave. Exam-
is very well obeyed except for the largest amplitudes of wallining the properties of sound waves in a compressible gas at
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pressurep, we find that the pressure and velocity amplitudesdicts the transition will occur at a critical value of

are related byp=(k/w)pU, wherel is the velocity ampli- U?7/IH~p7*/H (I is the mean-free pathbut this is not
tude, k is the wave number of the wave, ardis its fre-  true.

quency. Settingi~V, k~H"%, andw~ 7! gives the scal- The theoretical innovation of this paper is to consider the
ing in Fig. 5. energy flux as a function of the pressure instead of the local

The resonance affects the power injected by the wall only@ranular temperatur@s in[6]). It is this difference that dis-
for the Symmetric wave forrm, even though waves gener- tinguishes the scaling relations presented here from others in
ated by the asymmetric wave forB can also propagate the literature.
throughout the box at largl& andr close to 1. The reason is We believe these results to be relevant to current experi-
that particles can either gain or lose energy with the symmetmental questions. First of all, an experimental version of this
ric wave form. Thus, shifting the arrival time of a large system will soon be studied in micrograviff1]. Second,
group of particles by half a period can change the sign ofhese results can easily be extended to experiments done in
P.,. On the other hand, for the asymmetric wave f@nthe  gravity by realizing that conservation of momentum requires
amount of energy gained by the particles does not depend ahat the pressurdthe time-averaged force on the bottom
the phase of the wall. plate be the weight of the granular materighL=Nmg

The transition between the two scalings occurs at the critifinally, this work suggests that using the wave fdnfor an
cal value Ur/(H—A)~0.4. Examination of simulations experimental approximatiomay simplify results, leading to
made with 36<H<100 confirms that this critical value re- 5 petter physical understanding of granular flows.
mains constant. At this time, we do not have a satisfying
explanation for this critical value. Examination of tempera- This work was supported by Grant No. 96/CNES/0367
ture profiles confirm that the transition occurs when the wavdrom the Centre National d’Etudes Spatiales. S.M. benefited
propagates all the way through the system. However, an e§om a Region Rhones-Alpes visiting scientist position at the
timate based on the decay of the wave due to diffusion prePole Scientifique de Modisation Numeique of ENS-Lyon.
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